Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.

نویسندگان

  • Hisashi Ito
  • Ayumi Tanaka
چکیده

Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity Running head Evolution of a new chlorophyll metabolic pathway Authors

Title Evolution of a New Chlorophyll Metabolic Pathway Driven by the Dynamic Changes in Enzyme Promiscuous Activity Author(s) Ito, Hisashi; Tanaka, Ayumi Citation Plant and Cell Physiology, 55(3): 593-603 Issue Date 2014-03 Doc URL http://hdl.handle.net/2115/58225 Right This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Plant and Cell Physiology following ...

متن کامل

Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages

Phenylalanine amonia-lyase (PAL) is one of the most important enzymes that plays a key role in regulationof phenylpropanoid production in plants. It catalyzes the first step of the phenylpropanoid pathway in whichL-phenylalanine is deaminated to trans-cinnamic acid. This step is significant for metabolic engineering andhyper-expression of the major phenylpropanoid, methyl chav...

متن کامل

Production of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System

Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...

متن کامل

Effective fraction of Teucrium polium suppressed polyol pathway through inhibiting the aldose reductase enzyme: strategy to reduce retinopathy

Background: Several metabolic pathways are involved in the complications of diabetes like polyol pathway. Aldose reductase (AR) is a key enzyme in the polyol pathway, which catalyzes the conversion of glucose to sorbitol. AR inhibitors are appropriate to prevent and treat the diabetes complications. Objective: This study was designed to investigate the effect of different fractions of Teucrium ...

متن کامل

VARIATIONS OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE ACTIVITY IN VARIOUS TISSUES INDUCED BY METABOLIC ALKALOSIS, ACIDOSIS AND DIABETES

The effects of chronic metabolic acidosis, alkalosis and alloxan-induced ketoacidosis on G6PD activity of rat kidney, liver and erythrocytes were studied. Metabolic acidosis significantly increased the activity of kidney enzyme (55%) but decreased the liver (43%) and erythrocyte (38%) enzyme activities. Alkalosis did not make a significant change in the kidney or liver enzyme activity but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 55 3  شماره 

صفحات  -

تاریخ انتشار 2014